Nitrogen Stabilizers

by: Beatrix Haggard, Ph.D.
N Cycle

• Losses
 – Volatilization
 – Leaching
 – Denitrification
 – Runoff
Sources

• Urea
 – Volatilization, Leaching, Denitrification, Runoff

• Urea-ammonium nitrate
 (50% urea, 25% ammonium, 25% nitrate)
 – Volatilization, Leaching, Denitrification
Stabilizers

• Goals
 – Reduce volatilization
 – Reduce leaching
 – Reduce runoff
 – Reduce denitrification

• What are the mechanisms that these reductions are accomplished?
Urease Inhibitors

• N-(n-butyl) thiophosphoric triamide (NBPT)
 – Works by inhibiting or stopping the breakdown of urea, the chemical provides the ability to block the active site of the urease enzyme. This prevents the hydrolysis of urea.
 – \((\text{NH}_2)_2\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 2(\text{NH}_3)\)
Urease Inhibitors

- **N-(n-butyl) thiophosphoric triamide (NBPT)**
 - Works by inhibiting or stopping the breakdown of urea, the chemical provides the ability to block the active site of the **urease** enzyme. This prevents the hydrolysis of urea.

 \[
 (\text{NH}_2)_2\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 2(\text{NH}_3)
 \]
Urease Inhibitors

• NBPTs
 – Agrotain Ultra
 – Arborite
 – N-FIXX

• 40% maleic-itaconic co-polymer
 – Nutrisphere
 – UPGRADE

• Ca-Aminoethylpiperazine & Ca-Heteropolysaccharides
 – NSTAY
 – NZONE
Nitrification Inhibitors

- 2-chloro-6-(trichloromethyl)-pyridine
 - Nitrapyrin
- Dicyandiamide
 - DCD

Nitrification inhibitors help eliminate/reduce the nitrosomonas bacteria from turning ammonium-N into nitrate-N
Nitrification Inhibitors

DCD
- Agrotain Plus (+NBPT)
- Super U (+NBPT)
- Slow N
- Guardian

Nitrapyrin
- Instinct
Slow Release

• Exhibit a controlled release / slow release

Blaylock, 2010
Slow Release

- Sulfur-coated urea
- Polymer-coated urea
 - CoteN®
 - ESN®
Other Inhibitors

• Urea-Formaldehyde/Methylene Urea
 – CoRoN®
Current Trials

• 2 Sites
 – Macon Ridge Research Station
 – Northeast Research Station

• 1 year
 – 2013
Current Trials

6 N sources
- Urea
- SuperU
- Instinct
- Agrotain Ultra
- Agrotain 20
- Nutrisphere

3 N rates
- NERS
 - 240
 - 270
 - 300
- MRRS
 - 210
 - 240
 - 270
Northeast Research Station

Corn grain yields (bu/ac)

- None
- NBPT
- NBPT
- NBPT+DCD
- Maliec
- Nitrapyrin

Enhanced Efficiency N Products

- Urea
- Agrotain Ultra
- Agrotain 20%
- Super U
- Nutrisphere
- Instinct

Yield Comparison:
- 240
- 270
- 300
Macon Ridge Research Station

Enhanced Efficiency N Product

Corn grain yield (bu/ac)

None NBPT NBPT NBPT+DCD Maliec Nitrapyrin

Urea Agrotain Ultra Agrotain 20% Super U Nutrisphere Instinct

Enhanced Efficiency N Product

210 240 270
Enhanced Efficiency Nitrogen Products

Urea
Agrotain Ultra
Agrotain 20%
Super U
Nutrisphere
Instinct

None
NBPT
NBPT+DCD
Maliec
Nitrapyrin

Corn NUE (%)
MRRS - NUE

Enhanced Efficiency Nitrogen Products

- Urea
- Agrotain Ultra
- Agrotain 20%
- Super U
- Nutrisphere
- Instinct
- None
- NBPT
- NBPT + DCD
- Maliec
- Nitrapyrin

Corn NUE (%)
Results

• N rate was the most influential factor at St. Joseph
 – Residue
• Inhibitors were important at the Macon Ridge location
 – SuperU provided the ability to drop to 210 lbs N/acre and out yield 270 lbs N/acre as Urea.
Results

• The mode of action was important depending on the location
 – MRRS yielded better when a type of urease inhibitor was used
 – NERS
 • SuperU and Instinct
 – Showed some importance of a nitrification inhibitor
Results

• Nitrification Inhibitors
 – High moisture
 • Rain or irrigation
• Urease Inhibitors
 – Exposure to the surface/air
 • Urea on surface or dry soil
• Polymer Coated Urea
 – Physically controlled release
 • Dependent on temperature and moisture
 • Not beneficial as the only N source - Deficiencies